=6t^2+12t+6-5

Simple and best practice solution for =6t^2+12t+6-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for =6t^2+12t+6-5 equation:


Simplifying
0 = 6t2 + 12t + 6 + -5

Reorder the terms:
0 = 6 + -5 + 12t + 6t2

Combine like terms: 6 + -5 = 1
0 = 1 + 12t + 6t2

Solving
0 = 1 + 12t + 6t2

Solving for variable 't'.

Combine like terms: 0 + -1 = -1
-1 + -12t + -6t2 = 1 + 12t + 6t2 + -1 + -12t + -6t2

Reorder the terms:
-1 + -12t + -6t2 = 1 + -1 + 12t + -12t + 6t2 + -6t2

Combine like terms: 1 + -1 = 0
-1 + -12t + -6t2 = 0 + 12t + -12t + 6t2 + -6t2
-1 + -12t + -6t2 = 12t + -12t + 6t2 + -6t2

Combine like terms: 12t + -12t = 0
-1 + -12t + -6t2 = 0 + 6t2 + -6t2
-1 + -12t + -6t2 = 6t2 + -6t2

Combine like terms: 6t2 + -6t2 = 0
-1 + -12t + -6t2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(1 + 12t + 6t2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(1 + 12t + 6t2)' equal to zero and attempt to solve: Simplifying 1 + 12t + 6t2 = 0 Solving 1 + 12t + 6t2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + 2t + t2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + 2t + -0.1666666667 + t2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + 2t + t2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + 2t + t2 = 0 + -0.1666666667 2t + t2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 2t + t2 = -0.1666666667 The t term is 2t. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2t + 1 + t2 = -0.1666666667 + 1 Reorder the terms: 1 + 2t + t2 = -0.1666666667 + 1 Combine like terms: -0.1666666667 + 1 = 0.8333333333 1 + 2t + t2 = 0.8333333333 Factor a perfect square on the left side: (t + 1)(t + 1) = 0.8333333333 Calculate the square root of the right side: 0.912870929 Break this problem into two subproblems by setting (t + 1) equal to 0.912870929 and -0.912870929.

Subproblem 1

t + 1 = 0.912870929 Simplifying t + 1 = 0.912870929 Reorder the terms: 1 + t = 0.912870929 Solving 1 + t = 0.912870929 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + t = 0.912870929 + -1 Combine like terms: 1 + -1 = 0 0 + t = 0.912870929 + -1 t = 0.912870929 + -1 Combine like terms: 0.912870929 + -1 = -0.087129071 t = -0.087129071 Simplifying t = -0.087129071

Subproblem 2

t + 1 = -0.912870929 Simplifying t + 1 = -0.912870929 Reorder the terms: 1 + t = -0.912870929 Solving 1 + t = -0.912870929 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + t = -0.912870929 + -1 Combine like terms: 1 + -1 = 0 0 + t = -0.912870929 + -1 t = -0.912870929 + -1 Combine like terms: -0.912870929 + -1 = -1.912870929 t = -1.912870929 Simplifying t = -1.912870929

Solution

The solution to the problem is based on the solutions from the subproblems. t = {-0.087129071, -1.912870929}

Solution

t = {-0.087129071, -1.912870929}

See similar equations:

| 8-5x=x-40 | | (1/8a^-3b^6)^-2/3 | | log(x)-log(x+7)=-1 | | 0.03(3c-75)=-0.9(c-3) | | 6x-38=22 | | 7-2y=5y-13 | | 5a-84=31 | | 7.6x-32=1.2x | | 5x+8=-x+62 | | 3(x+4)=-4x+26 | | -7x+7y=-14 | | logx-log(x+7)=-1 | | X-11=30/x | | 10x+1-7x=-17x+7 | | 54=(2x+2.25)*(x+2.25)-(2x)*(x) | | x-23=36 | | 5x=65-35 | | x-13=37 | | x-5=34 | | 2x-2=x+0 | | x+20=44 | | s^2-12s+8=0 | | 42-7b=14 | | x+31=55 | | x-23=35 | | x-18=38 | | 2x(x-7)(2x-5)=0 | | 2n^3-14n^2+24n=0 | | 48x-96=x-30-10x*3 | | y-10=5.5(x-2) | | 7x+9=4x+39 | | Log(5)25=3x-5 |

Equations solver categories